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SOME GENERAL PROBABILISTIC ESTIMATIONS FOR THE RATE OF
CONVERGENCE IN OPERATOR SEMIGROUP REPRESENTATIONS

DIETMAR PFEIFER*
Center for Stochastic Processes, UNC at Chapel Hill, USA, and
Institut fUr Statistik und Wirtschaftsmathematik, Technical
University, Aachen, W. Germany - .

Abstract Starting from well-known estimations for the rate
of convergence in Hille's, Phillips' and Widder's representa-
tion formulas for operator semigroups w show-,that by a suit-
able probabilistic approach, these results are easily reob-
tained, and can immediately be generalized to arbitrary (pro-
babilistic) rep esentatiop formulas. Some examples are also
considered._ -~t'~,~: ~ ~ ~ - /.. $~'_

INTRODUCTION '"--

As has been worked out in the recent papers [6],[7], probability

theory has shown up to be a powerful tool within representation

theory of semigroups of linear operators, especially in connection

with approximation - theoretic questions in this area. In fact,

all relevant estimations for direct approximation theorems and

many estimations involving various kinds of moduli of continuity

are covered by this approach. However, in (7] some questions con-

cerning certain indirect approximation theorems remained open

which we shall answer in this paper. Especially, we shall show

that Ditzian's (1i,(2],[3] estimations for the rate of convergence

for the most important semigroup representations of Hille,

Phillips and Widder (see [4]) are not only easily reobtained by

the probabilistic approach, but also generalize immediately to

*Research supported in part by US AFOSR Contract No. F49620 82 C

0009.
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arbitrary semigroup representations of probabilistic type (see [61).

rhroughout the paper, we shall consider a strongly continuous one-

parameter operator semigroup {T(t); t : 0} of bounded endomorphisms

on a Banach space X with norm 11'11 as in [7]. As usual, A will de-

note the infinitesimal generator of the semigroup, and

R(.) = (XI - A) stands for the resolvent of the semigroup which

balways exists for sufficiently large X. Further, let w (6,f) de-

note the rectified modulus of continuity in the interval [O,b]

given by

Jb Oz, f) sup T l(t)f - T(s) fll 0<-s, t-!<b, s - t I < 61(i

for b, 5 > 0, f ,X. In 1960, Hsu [5] gave a first estimation for

the rate of convergence in Hille's exponential formula in terms of

the rectified modulus of continuity; he proved

0b 1 /3 h / 3

Iexp(Aht)f- T(t)f w - (h ,f) +K iff1h' (2)

for fr X, h> 0 (such that t+h < b) where K is independent of f,h

and t, and Ah is the difference operator given by

A f = -l(T(h) - I), h > 0, f X. .(3)
h h 

/In 1969 Ditzian [1] proved that in formula (2), the term h could
x

be replaced by any power h with O< x< 1/2, and that x could not be

extended to values larger than 1/2. (For an extension of this re-

lation to arbitrary semigroup representations of probabilistic

type, see [7]). He also proved [2] that for x= '/2, a similar es-

timation holds true, however with a larger factor for the modulus;

he obtained

Llexp(Aht)f -T()f f Wb(h/ , f) (4)

for t ,b- 5 (0< S< b being fixed), and h small enough, where

again L is independent of h and t. In [3], he developed analogous

estimations for Phillips' and Widder's representation formulas; he

... A
........ . . . . . . "'. ? - i . .- .iii? :' - - '? " ''i '.i. -" . .- i.' "i -" .' .. .''i'"-'- .
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showed that

b /2
nn n--ifKw (n If) fE X

ll{t R(n) }n+If - T(tof 1 < K~~-/'~

n- b(n ,Af), fE D(A) (5)

Kib ( - 1 / 2 ,f

lexp(-tXI+t 2 R(X))f- T(t)fl Kw I ) f E (A (6)
[LX w ( 2 Af), f E D(A)

for sufficiently large n and X, where again t< b-6, and K and L

are independent of n, X, and t. Here D(A) denotes the domain of

the infinitesimal generator A.

It is no surprise that the right hand side of (4),(5) and (6)

are of the same type; this is essentially due to the fact that the

estimations involved here are closely related to the variances of

the underlying random variables when the probabilistic forms of

the above representations are considered (see [6] and [7]); this

will be worked out in more detail in the following chapter.

The basic tool here will be the concept of the probability
,

generating function 'X of a suitable random variable X, given by

'X (t) = E(tX), t > 0 and 'x(t) =-E(etX) t E R (7)

where E(-) means expectation.

MAIN RESULTS

The basic estimation from which all relevant results can immedi-

ately be derived is given in the following statement.

THEOREM 1. Let 0-< t -b and assume that X is a random variable

which is concentrated on the interval (0,b] with expectation

E(X)= t. Then the variance 2 =a 2 (X) is finite, and for all £> 0,

we have

cybE[T(X)]f- T(t)ffl f (l+-)W (E,f), f EX (8)
E

* % . - -.. , . . . . , .• . - . *. . . . . . - . . . . . .
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.E[T(X) 
I f - T(t)fI < J(l+!)wb (,Af), f E D(A). (9)

Proof. Under the conditions above, the moment-generating function

Y exists everywhere, hence E[T(X)] is well-defined (see [6]).
*Further,

'!E[T(X)If-T(t)fI ffT(X)f-T(t)fldP fw (Ix - t',f)dP

- (1~ '-t b ~ b(10)

for f- X since by the Jensen inequality (see [7), Theorem 2.1),
2 , 2 2

{E(X- ti);'<E((X-t) )=7 . Here P denotes the underlying pro-

bability measure. This proves relation (8).

Now assume f.- D(A). Then
1 (11)

T(X) f - T(t)f = (X - t)T(t)Af + (X - t)f [T(t+ u(X - t)) - T(t) ]Af du,
0

hence

I E[T(X)]f-T(t)f!I = IE((X- t)f[T(t+u(X- t)) -T(t)]Af du)II

0

E(IX- tI{l+-tl)wb(EAf) <-3(l+-)w b(E,Af) (12)
E E

which proves relation (9).

Since probabilistic representation theorems for operator semi-

groups are closely related to the law of large numbers (see [6]),
it is interesting to see what kind of estimations can be obtained

from the Theorem 1 in this case. For this purpose, X has to be

replaced by the arithmetic mean -Z X where X X are
n nk=lk 1' n

independent copies of X. Then for the variance, cT ( )a /n,
n

hence the following result holds.

COROLLARY 1. Under the conditions of Theorem 1, and if

XI,.... Xn are independent copies of X, we have

b - /2n
E[r(Xn]f.-T(t)fi < (l+)... (n 1,f), fX (13)
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IEtT( n)I f -T W fl :5 nI /2( + a)W b (n/2,Af) , fE D(A). (14)

Proof . Obvious by letting E =n in Theorem 1.

It is no problem to extend the above results also to more

general situations, i.e. arbitrary distributions for the under-

lying random variables. One such result is the following.

THEOREM 2. Let X be a non-negative random variable whose moment-j

gathering function T Y exists for some positive argument. Then for

sufficiently large n, E(T(X n)] exists, and

-b -'4
HE[T ("R )f -T(t) fI : Kwi (n- f), f EX (15)

IIE[T(X n]f -T(t) ff Ln /Wb (n -12Af), f ED(A) , (16)

where t=E(X), t~b-6 (0< S<b being fixed), n being sufficient-

ly large, and K and L are independent of n and t.

Proof. Define

=rX, if In ti I

n t, otherwise.

Then

f IT( f -T(t) fI dP T !I(Y )f-T(t) f!dP
n n

'rW b (!Yb - 1/
n tJ tjf dP !5 (1l+ a)w (n ,f)

(where I2 again denotes the variance of X), and

-f IT (X ) f -T(t) f 11dP !5 K~e e II
nn

for some constant K > 0 (independent of n and t) by the proof of
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Theorem 5.1 in [7]. Thus

b b-2 

.

for some suitable constant K> 0. This proves (15). For the proof

of (16), observe that

m[T(X n)]f-T(t)fII 1! E(IT(X )f-T(Y )fII) +n n

... + lE[T(Yn) If - T(t)fII

< r IT (X n)f -r(t)f IdP + E( IXn-Y n I)T(t) AfI +..

nn
- / bf II(~ -tfdP E(I % )I~)Af

...+ n- 2(l+J))j (n /2,Af)

! lfl+ V P(I§7F7t7 > )LI*l
n nK ! f 11+.Ein- )"P >6 J:

/2 b -/2
.+ n 0(l+a)w (n ,Af)

< K e 1lf 1 +GL e JIAfl1 +

b 1/2
...+ n O(l+a)w (n ,Af)

by (12) and H6lder's inequality for suitable constants L ,L >0,

which gives the desired result.

An immediate consequence of Theorem 2 to general probabilis-

tic representation theorems for operator semigroups is given in

the following statement.

COROLLARY 2. Let N be a non-negative integer-valued random variable

and Y be a non-negative real random variable such that T N(
61) <0

for some i > I and Ty (5) < - for some 6 > 0. Then the expecta-
1 Y 2 2

tions E(N)= . and E(Y)= y (say) exist, and for sufficiently large

n, S = 4 (E[T()]) n exists as a bounded linear operator. Then

rlb n

-7..
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if t =y <b-S (0< 6<b) being fixed), there exist constants K

and L which are independent of n and t such that

IIS f-T(t)f W Kb(n-/ 2 ,f), f X (17)n

IS f-T(t)fl <- Ln- /2b(n-'/2,Af) f E D(A). (18)n

Proof. Obvious from Theorem 4.4 and 5.2 in [7].

It is interesting to notice that Ditzian's estimations (5)

and (6) (for integer values of A) are covered by Corollary 2, as

well as a discrete version of (4) with h= 1/n; here additionally

a corresponding estimation for f E D(A) is at once available (see

[61 and [71). Moreover, it is also possible to obtain the general

estimations (4) and (6) by an application of the above Theorem to

the situation under Theorem 4.2 in [7], using Poisson processes

for Hille's and Phillips' formulas. The missing estimation for

Hille's formula then is

1/2 b 1/2
I1exp(Aht)f-T(t)fjl S Lh w (h ,Af), f E D(A) (19)

for t< b-5 (0< 6< b being fixed), and h small enough.

It should be pointed out finally that Corollary 1 can immedi-

ately be applied to Kendall's representation formula using bi-

nomial distributions which has an interesting application to

Bernstein polynomials. Namely, we have (20)

b -1/2
n (n-I/2 (l-tj) (n f n f ,Af),

f E D(A)

for 0 <51, and b = 1. Applying this to the semigroup of transla-

tions as in [7], chapter 7, and letting w denote the modulus of

continuity in the interval [0,11, we obtain for the Bernstein

polynomials

" - • -. . . b. . . -



(k x k n-k
(g,x)= / ( )g(-) (1- x) , 0- x 1 , n 1, g E C[0,1]

k=0
"- [ 11(2.1)

(1 + Vx(l-x))w(n- 2,g), g x C[0,1]

B (g,x) -g(x) _ _ _

n + /xl-)( + x (l-x)) w(n-:2 g ' ) , g'EC[0,1].

It should be pointed out finally that the arguments above can

also immediately be applied to more general forms of operator semi-

Igroup representations, for instance the product representation

theorems developed in [6].
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